
20

a typedef to give a name to the desired sequence. Hopefully, support for nested modules is

not a serious issue, since it is not likely to be fixed in the near future.

19

}
#else
SOMObject* X::somDefaultConstAssign(som3AssignCtrl * ctrl, const SOMObject* fromObj)
{

X &fromX = (X&)(*((X*)((void*)fromObj)));
int i; cs._length = fromX.cs._length; cs._maximum = fromX.cs._maximum;
cs._buffer = (SOMClass**) SOMMalloc(cs._maximum * sizeof(SOMClass*));
for (i=0; i<cs._length; i++)

cs._buffer[i] = fromX.cs._buffer[i];
return (SOMObject*)((void*)this);

}
#endif

As can be seen from this example, the HighC/C++ form makes use of a pseudo operator

named somAssign that is given the right types for an X assignment operator. The result is

that DTS C++ programmers don’t need to use type casting to implement assignment

operators. The HighC/C++ compiler currently issues warning messages about the argument

and return types used for somAssign (refer to the first example, where the MetaWare

compiler output was shown), but MetaWare will be removing these in future versions of the

compiler.

In constrast, the VAC++ form uses the actual methods introduced by SOMObject. Because

C++ typing rules don’t allow changing the types of these methods in subclasses as required

to reflect their actual purpose as assignment operators, the programmer needs to perform

casts -- first, to access X’s data in the fromObj, and then to return the assigned object as the

result.

Conclusion

Both from the standpoint of programmer ease and execution efficiency, DTS compilers can

provide the best support for creating and using SOM classes. The SOMobjects Developer

Toolkit supports DTS C++ by providing top-level DTS C++ header files and emitters to

generate DTS C++ headers and implementation templates for SOM classes described using

IDL. When DTS C++ programmers use IDL to describe the interfaces for their classes, and

use the dtsdefaults modifier, these emitters make it simple to implement SOM classes using

DTS C++.

Current Problems

Perhaps the most serious remaining problem with the DTS C++ compilers concerns the

lack of correct support for IDL modules by DTS C++ compilers. Although the .hh file

provides a temporary workaround for this, it only supports using instances of such classes -

- i.e., the workaround is not sufficient to support DTS C++ implementation of classes or

subclassing from classes whose corresponding interface is defined within an IDL module.

This is a known defect, and will be fixed in the near future. The most usual symptom of this

defect is that parent classes will not be located during class construction.

Also, the hh emitter has some limitations. It doesn’t support anonymous sequences used as

method arguments in IDL. And, it doesn’t support nested modules (i.e., IDL modules

contained within other modules). To get around the anonymous sequence problem, just use

18

Assignment Operators

Assignment operators for SOM classes are similar to copy constructors, in that there are

four special methods introduced by SOMObject for this purpose: somDefaultAssign,

somDefaultConstAssign, somDefaultVAssign, and somDefaultConstVAssign. As with copy

constructors, only the const form, somDefaultConstAssign, needs to be defined. And,

again, the dtsdefaults modifier allows the DTS C++ compiler to provide an appropriate

default. If you need to define this operator, you simply override somDefaultConstAssign in

your IDL (while continuing to use dtsdefaults).

However, your implementation template file will not include a user-defined operator= when

you override somDefaultConstAssign. This is because it was decided that DTS C++ should

implement the semantics of C++ with respect to a user-defined operator=, and this is not a

good solution for assignment in SOM class hierarchies. So, DTS C++ compilers provide an

alternative syntax whose meaning can be unambiguously be interpreted as requesting an

override for one of SOMObject’s assignment methods. Currently, there are two different

syntaxes for this: one supported by MetaWare’s High C/C++, and the other supported by

VAC++. For a number of reasons, the MetaWare form is more desirable, and VAC++ will

support this in the future. But, currently, an #ifdef is used in the emitted template file to

distinguish the two different forms. So, when you override somDefaultConstAssign, there

will be a corresponding #ifdef in your implementation template file, and you must define

the branch appropriate to the compiler that you are using.

Here is an example IDL file and a corresponding emitted .cpp file that illustrates explicit

definition of somDefaultConstAssign. In this example, we fill in both branches of the

#ifdef, so you can see the difference between the HighC/C++ approach (which uses

__EXTENDED__SOM__ASSIGNMENTS__) and the VAC++ approach (which doesn’t).

#include <somcls.idl>
interface X : SOMObject {

attribute SOMClass::SOMClassSequence cs;
implementation {

dtsdefaults;
somDefaultConstAssign: override;

};
};

// Generated from t1.idl at 04/08/96 08:15:03 EDT
// By IBM DTS C++ implementation template emitter version 1.1
// Using hc.efw file version 1.1
#include <t1.hh>

/* Begin implementation of interface X */

// default ctor for dtsdefaults
X::X()
{ cs._length = cs._maximum = 0; }

#ifdef __EXTENDED__SOM__ASSIGNMENTS__
X::X& somAssign(const X& fromObj)
{

int i;
cs._length = fromObj.cs._length; cs._maximum = fromObj.cs._maximum;
cs._buffer = (SOMClass**) SOMMalloc(cs._maximum * sizeof(SOMClass*));
for (i=0; i<cs._length; i++)

cs._buffer[i] = fromObj.cs._buffer[i];
return *this;

17

year. A file named dtsmin3.zip will be used to package up DTS C++ emitters that use the

new parent call with the new SOM kernel that supports it.

Copy Constructors

Copy constructors for SOM classes are implemented by overriding one or more of the

SOMObject methods provided for this purpose. These methods are named

somDefaultCopyInit, somDefaultConstCopyInit, somDefaultVCopyInit, and

somDefaultConstVCopyInit, which represent all four C++ overloadings of a class’s copy

constructors with respect to const (or not) and volatile (or not). Nobody really knows what

the volatile forms are for in the case of SOM classes, but they are provided in SOMObject

because otherwise subclasses wouldn’t be able to define them. Who knows? Maybe you’ll

have some use for the volatile overloaded forms. But, we suggest that (only)

somDefaultConstCopyInit be defined by all SOM classes. Assuming that the parents of a

class do this, the dtsdefaults modifier will allow the DTS C++ compiler to do this without

programmer involvement. Although the compiler can provide a reasonable default version,

you may want to define your own implementation in some cases. To do this, you simply

override somDefaultConstCopyInit in your IDL (while continuing to use dtsdefaults). The

resulting implementation template will include a const copy constructor that you can define.

The reason that only the const form needs to be defined is that the SOM kernel and the

DTS C++ compiler arrange that if only a const copy constructor is defined by a class, then

it will be used for both const and non-const arguments. Here is an example IDL file and a

corresponding emitted .cpp file that illustrates an explicit definition of

somDefaultConstCopyInit.

#include <somcls.idl>
interface X : SOMObject {

attribute SOMClass::SOMClassSequence cs;
implementation {

dtsdefaults;
somDefaultConstCopyInit: override;

};
};

// Generated from t.idl at 04/08/96 08:04:38 EDT
// By IBM DTS C++ implementation template emitter version 1.1
// Using hc.efw file version 1.1
#include <t.hh>

/* Begin implementation of interface X */

// default ctor for dtsdefaults
X::X()
{ cs._length = cs._maximum = 0; }

X::X(const X& arg)
{

int i;
cs._length = arg.cs._length; cs._maximum = arg.cs._maximum;
cs._buffer = (SOMClass**) SOMMalloc(cs._maximum * sizeof(SOMClass*));
for (i=0; i<cs._length; i++)

cs._buffer[i] = arg.cs._buffer[i];
}

16

signature. Future versions of the hh and hc emitters will hopefully address this issue. But, in

the mean time, when starting with IDL, a good guideline is to avoid defining multiple

initializers with the same signature.

The pragma on line 31 is used to inform the DTS compiler of the SOM name of the

initializer method. Constructors and assignment operators are different from normal C++

methods, so this constructor is not covered by the SOMNoMangling pragma on line 13.

Line 34 is the override for somPrintSelf, a method introduced by SOMObject (and therefore

described in the DTS C++ header file somobj.hh).

Line 36 and 37 declare the cs attribute. Attributes are handled in a very special way by DTS

C++. By default, public attributes declare nonvirtual public methods (the _get and _set

accessor methods) supported by private data. Data access syntax in DTS C++ then uses the

accessor methods instead of direct data access. There are a number of modifiers that can be

used in SOMAttribute pragmas to change these defaults. See the documentation for your

compiler for complete information, but the following should be supported:

noset
Compiler won't define _set; the programmer does it

noget
Compiler won't define _get; the programmer does it

nodata
An instance variable will not be introduced to support the attribute accessors

readonly
no _set operation will be provided

virtualaccessors
accessor methods will be virtual (they can be overridden)

Note that the virtualaccessors modifier is used in the SOMAttribute pragma on line 37. The

reason is that this is the default in IDL (where the attribute was defined). If any of the

modifiers noset, noget, or nodata is used, the programmer must define accessor methods.

When this is done, the -yxqnosomvolattr (icc compiler switch) is important, because

otherwise the DTS compiler will not accept programmer definitions of these methods.

Specifically, the problem is that the VAC++ compiler will expect different overloadings

than those provided by the implementation template emitter, which are based on an agreed-

to DTS C++ specification.

Lines 39 through 42 provide the releaseorder, which supports RRBC.

The remaining lines are provided until the DTS C++ compiler provides better support for

parent method calls. The structure definition represents the ClassData structure for Ex3,

which is where SOM stores method tokens. The SOM_MTOKEN_Ex3 macro is used to

access these method tokens, and the SOM_PARENT_Ex3 macro is used to perform parent

method calls. Papers on Workplace Shell programming using DTS C++ explain the

importance of supporting parent method calls. The macro defined here is restricted to use in

purely single inheritance hierarchies (such as the WPS), and is supported by currently

available SOM kernels. SOM kernels supporting a new parent method call model

appropriate in general multiple inheritance hierarchies will be made available later this

15

Line 11 begins the declaration of the DTS mode C++ class named Ex3. The pragma on line

12 is what causes the class to have this name, since, otherwise, that actual name of the class

would be zex3. This is because, by default, DTS mode class names are mangled to remove

upper case letters. The reason is that case cannot be used in IDL to distinguish different

identifiers, and it is desired that legal C++ class hierarchies should be mapped to legal IDL

interface hierarchies (when possible) without requiring intervention on the part of the C++

programmer. The result, however, is that C++ programmers that write their own header

files must take special care if they want their class and method names to appear sensibly to

non-DTS C++ users.

Line 13 indicates that method names in the current class should not be mangled, and line 14

indicates that all introduced methods will take an implicit environment parameter. In both

IDL and DTS C++, the environment parameter is somewhat like the target object reference

because it is not explicitly declared in method prototypes, nor is it explicitly passed as an

argument by the DTS C++ programmer. Within methods that receive an environment, it

can be accessed using the name __SOMEnv. Refer to the DSOM Stack client and

implementation examples provided earlier to see code that accesses and manipulates the

environment.

Line 16 begins public declarations. The SOMAsDefault(off) pragma on line 17 is used for

normal type declarations, so C++ structs won’t be mapped to SOM classes. This is not

structly necessary for the typedef on line 18, since it just introduces a local name for a

previously defined type. But, a number of IDL types are mapped to C/C++ structs, so it is

important that the hh emitter provides this support in general. Line 19 returns the

SOMAsDefault mode to whatever it was before line 17. (Which is normally off). When

SOMAsDefault is on, C++ structs and classes without parents will be compiled using DTS

mode.

Lines 21 and 22 result from the dtsdefaults modifier placed in the ID, and guarantee that the

class will have a default no-argument constructor even if other constructors are explicitly

defined (as is the case in this example).

Lines 24 through 27 provide a typedef for the initWithLong method. The hh emitter

provides typedefs for all new methods introduced by a class. This is not needed for normal

method invocations, but SOM enables more dynamic capabilities than those provided by

C++ (or even DTS C++), and these typedefs are often useful in this regard. For example,

the currently available DTS C++ compilers don’t support SOM parent method calls. To

support these, emitted .hh files provide special macros (discussed below) which use these

tyepdefs. In particular, the somTD typedef form is useful to cast a function pointer as

necessary to inform the compiler of the expected arguments of a method implementation.

Notice how both the target object reference and the environment pointer appear explicitly

in these resulting typedefs.

In this case, the initWithLong method is a SOM initializer. These are reflected in emitted .hh

files as C++ constructors with appropriate signatures, as one line 30. The SOM approach is

somewhat more general than provided by C++, since different initializers with the same

signature are allowed, overrides are allowed, and objects can be initialized multiple times.

Currently, no warnings are provided when two different initializers have the same

14

23
24 // new method: initWithLong
25 typedef void SOMLINK somTP_initWithLong(Ex3 *somSelf, Environment *ev,
26 ::som3InitCtrl* ctrl, classes* ics);
27 typedef somTP_initWithLong* somTD_initWithLong;
28
29 // an initializer that takes a sequence of classes
30 Ex3(classes* ics);
31 #pragma SOMMethodName(Ex3(classes* ics), "initWithLong")
32
33 // output the cs attribute
34 virtual ::SOMObject* somPrintSelf();
35
36 classes cs;
37 #pragma SOMAttribute(cs, virtualaccessors)
38
39 #pragma SOMReleaseOrder (\
40 "initWithLong", \
41 "_set_cs", \
42 "_get_cs")
43
44 #pragma SOMAsDefault(off)
45 typedef struct {
46 SOMClass *classObject;
47 somMToken initWithLong;
48 somMToken _set_cs;
49 somMToken _get_cs;
50 } __ClassDataStruct;
51 #pragma SOMAsDefault(pop)
52 #define SOM_MTOKEN_Ex3(mName) \
53 (((::Ex3::__ClassDataStruct*)&Ex3ClassData)->mName)
54 #define SOM_PARENT_Ex3(obj,mName,icls,mToken) ((icls::somTD_ ## mName) \
55 somParentResolve((somMethodTabs)(Ex3CClassData.parentMtab),mToken))
56 };
57 /* End Ex3 */ #endif /* _DTS_HH_INCLUDED_ex3 */

We mentioned earlier that the native mode C++ bindings are quite different from the DTS

C++ bindings. One way to understand this is as follows. In both cases, it is necessary to tell

the compiler things that it doesn’t otherwise know. In the case of native mode C++

bindings, the C++ compiler must be guided in how to invoke a method on a SOM object.

So the native mode C++ bindings define member functions that expand to SOM method

invocations. In contrast, the DTS C++ compiler knows how to make SOM method calls.

But, it doesn’t know the SOM names for methods declared in C++ (these are generally

different than the C++ names, because C++ method names are mangled to include

signature information in support of C++ overloading). Working through the above header

file should clarify this.

Lines 1 and 2 are used to guard the contents of the file against multiple inclusions within a

single compilation unit.

Lines 4 through 7 provide indicate the levels of the hh emitter and the supporting cpp.efw

file.

Line 9 #includes som.hh. This is a specially constructed top-level header that #includes

other headers that define SOM’s basic types and APIs, and then includes the generated .hh

files for the three classes provided by the SOM kernel.

13

stackTop--;
return (stackValues[stackTop]); }

else {
somSetException(__SOMEnv, USER_EXCEPTION,

ex_Stack_STACK_UNDERFLOW, NULL);
return (-1L); }

}

void Stack::push(long el)
{

if (stackTop < Stack_stackSize) {
/* Add element to top of the stack. */
stackValues[stackTop] = el; stackTop++; }

else {
somSetException(__SOMEnv, USER_EXCEPTION,

ex_Stack_STACK_OVERFLOW, NULL); }
}

An Emitted DTS C++ Header File:

So, far, we’ve deliberately avoided discussing the content of emitted .hh files. One reason

was to stress the underlying simplicity of the basic approach, which doesn’t really require

reference to DTS C++ headers. All you have to do is fill out the member function stubs

provided by the implementation template file.

But, of course, it is important to be familiar with emitted .hh files. For one thing, when

there are problems that result in compilation errors, the .hh files often provide the

information necessary to resolve problems. Also, if you decide to write your own .hh file,

you may want to use some of the special DTS C++ pragmas that are used to control various

aspects of DTS mode classes.

For these reasons, we now display and discuss the .hh file corresponding to ex3.idl. We’ve

simplified the file somewhat to remove redundancies, and have numbered the lines for ease

of reference.

1 #ifndef _DTS_HH_INCLUDED_ex3
2 #define _DTS_HH_INCLUDED_ex3
3
4 /* Start Interface Ex3 */
5 // Generated from ex3.idl at 04/06/96 11:18:57 EST
6 // By the IBM DTS C++ header emitter version 1.142
7 // Using cpp.efw file version 1.74
8
9 #include <som.hh>
10
11 class Ex3 : public ::SOMObject {
12 #pragma SOMClassName(*, "Ex3")
13 #pragma SOMNoMangling(*)
14 #pragma SOMCallstyle (idl)
15
16 public :
17 #pragma SOMAsDefault(off)
18 typedef ::SOMClass::SOMClassSequence classes;
19 #pragma SOMAsDefault(pop)
20
21 // dtsdefault ctor
22 Ex3();

12

[D:\SHD\SOM\DTS\1]ex3

{An Ex3 object with: no classes }

{An Ex3 object with:
SOMObject

}

Implementing the DSOM Example Stack Class

In this example, we look at a DTS C++ implemenation of the Stack class for which client

code was shown in the previous section. We begin by presenting the IDL, and follow this

with the DTS C++ implementation code.

// filename stack.idl
#include <somobj.idl>
interface Stack: SOMObject {

const long stackSize = 10;
exception STACK_OVERFLOW{};
exception STACK_UNDERFLOW{};
boolean full();
boolean empty();
long top() raises(STACK_UNDERFLOW);
long pop() raises(STACK_UNDERFLOW);
void push(in long el) raises(STACK_OVERFLOW);

implementation {
dtsdefaults;
releaseorder: full, empty, top, pop, push; long stackTop;
long stackValues[stackSize];
dllname = "stack.dll";
memory_management = corba;

};
};

#include "stack.hh"

Stack::Stack()
{ stackTop = 0; }

boolean Stack::full()
{ /* Return TRUE if stack is full. */

return (stackTop == Stack_stackSize);
}

 boolean Stack::empty()
{ /* Return TRUE if stack is empty.*/

return (stackTop == 0);
}

long Stack::top()
{

if (stackTop > 0) {
/* Return top element in stack without removing it from the stack.
return stackValues[stackTop-1]; }

else {
somSetException(__SOMEnv, USER_EXCEPTION,

ex_Stack_STACK_UNDERFLOW, NULL);
return (-1L); }

}

long Stack::pop()
{

if (stackTop > 0) {
/* Return top element in stack and remove it from the stack. */

11

// Generated from ex3.idl at 04/06/96 09:59:29 EST
// By IBM DTS C++ implementation template emitter version 1.1
// Using hc.efw file version 1.1
#include <ex3.hh>

/* Begin implementation of interface Ex3 */

// default ctor for dtsdefaults
Ex3::Ex3()
{ }

// an initializer that takes a sequence of classes
Ex3::Ex3(classes* ics)
{ }

// ouput the cs sequence
::SOMObject* Ex3::somPrintSelf()
{ }

The above implementation template could be filled out and augmented with a simple test

program as follows:

/*
* This file was generated by the SOM Compiler.
* Generated using:
* SOM incremental update: 2.24
*/

// Generated from ex3.idl at 04/06/96 09:59:29 EST
// By IBM DTS C++ implementation template emitter version 1.1
// Using hc.efw file version 1.1
#include <ex3.hh>

/* Begin implementation of interface Ex3 */

// default ctor for dtsdefaults
Ex3::Ex3()
{ cs._length = cs._maximum = 0; }

// an initializer that takes a sequence of classes
Ex3::Ex3(classes* ics)
{ int i;

cs._maximum = cs._length = ics->_length;
cs._buffer = (SOMClass**) SOMMalloc(cs._length * sizeof(SOMClass*));
for (i=0; i<cs._length; i++)

cs._buffer[i] = ics->_buffer[i];
}

// output the cs sequence
::SOMObject* Ex3::somPrintSelf()
{ int i;

somPrintf("{An Ex3 object with: ");
if (cs._length == 0) somPrintf(" no classes }\n");
else { for (i=0; i<cs._length; i++)

somPrintf("\n\t %s\n", cs._buffer[i]->somGetName());
somPrintf("}\n"); }
return this;

}

 main()
{

Ex3 x1;
x1.somPrintSelf();
Ex3::classes ps = (SOMClass::__ClassObject)->somGetParents();
Ex3 x2(&ps);
x2.somPrintSelf();

}

The output from the above example appears as follows:

10

_set method implementations. The releaseorder modifier supports RRBC. The following

command generates the necessary header and implementation template files from this IDL.

sc -shh;hc ex2

The resulting implementation template file, ex2.cpp, appears as follows:

// Generated from ex2.idl at 04/06/96 09:25:20 EST
// By IBM DTS C++ implementation template emitter version 1.1
// Using hc.efw file version 1.1
#include <ex2.hh>

/* * Begin implementation of interface Ex2 */

// default ctor for dtsdefaults
Ex2::Ex2()
{
}

This file can be compiled unchanged to produce a complete implementation for Ex2. In

general, of course, actual definitions for member functions will be needed. But, to conclude

this example, we add the following code to ex2.cpp

main()
{

Ex2 e;
e.somPrintSelf();

}

and compile the resulting file using VAC++ (and appropriate environment variable settings)

as follows:

icc ex2.cpp

The executable ex2.exe is created, which, when exected, produces the following output:

{An instance of class Ex2 at address 00048860}

Note: The main program above creates a SOM object as a local (stack) variable. This is a very useful

capability, because stack allocation is both simpler and more efficient than heap allocation. Native

mode C++ bindings cannot support this capability.

Another example:

Here is another example that uses more of IDL.

// filename: ex3.idl
#include <somobj.idl>
interface Ex3 : SOMObject {

typedef SOMClass::SOMClassSequence classes;
attribute classes cs;
void initWithLong(in som3InitCtrl ctrl, in classes ic);
// an initializer that takes a sequence of classes
 implementation {

dtsdefaults;
initWithLong: init;
somPrintSelf: override; // output the cs sequence
releaseorder: initWithLong, _get_cs, _set_cs;

 };
};

The init modifier declares initWithLong as a SOM initializer. This corresponds to a C++

constructor that will be emitted into the resulting ex2.cpp file:

9

boolean OperationOK(Environment *ev)
{

char *exID;

switch (ev->_major) {
case SYSTEM_EXCEPTION:

exID = somExceptionId(ev);
somPrintf("System exception: %s\n", exID);
somdExceptionFree(ev);
return (FALSE);

case USER_EXCEPTION:
exID = somExceptionId(ev);
somPrintf("User exception: %s\n", exID);
somdExceptionFree(ev);
return (FALSE);

case NO_EXCEPTION:
return (TRUE);

default:
somPrintf("Invalid exception type in Environment.\n");
somdExceptionFree(ev);
return (FALSE);

}
}

Defining a new SOM class

This example defines a new SOM class named Ex2. As mentioned earlier, two different

approaches are available for implementing new SOM classes in DTS C++. In this paper, we

will only consider the route that begins by writing IDL. It is not necessary to start with

IDL, but this is the approach that is familiar to all current SOM programmers, and it offers

important benefits for those interested in using IDL to publish CORBA compliant

interfaces and support DSOM use.

Start with an IDL interface definition:

// filename ex2.idl
#include <somobj.idl>
interface Ex2 : SOMObject {

attribute long l;
implementation {

dtsdefaults;
releaseorder: _get_l, _set_l;

};
};

As usual in SOM IDL, the implementation section provides valuable information about

how the SOM class that supports the defined interface is implemented. The dtsdefaults

modifier results in header files that allow the DTS C++ compiler to automatically generate

copy constructors, assignment operators, and a destructor for the class. Both the hh and hc

emitters provide special support for dtsdefaults. As a general guideline, we strongly

recommend its use if your’re using the hc emitter. The lack of any explicit modifiers for

the attribute l results in the DTS compiler automatically generating the necessary _get and

8

A DSOM Usage Example

Here is an example that shows client DTS C++ code written for a DSOM sample. The

methods in the Stack interface take an Environment parameter, but an environment is never

explicitly passed to methods in DTS C++. Instead, the DTS C++ compiler passes the

current value of __SOMEnv. This is always available within methods that receive an

Environment parameter (think of __SOMEnv as being similar to "this", which is available

within methods to access the implicit target argument). Other functions (like main, below)

can introduce and initialize a local variable of this name. Also, VAC++ (but not HighC/

C++) provides a global variable named __SOMEnv. It is not initialized to actually point to

an Environment structure, however, but you can initialize it the same way the code below

initializes the local variable of this name.

#include <somd.hh>
#include "stack.hh"
#include <stdio.h>

boolean OperationOK(Environment *ev);

int main(int argc, char *argv[])
{

Environment ev;
Environment* __SOMEnv = &ev;
Stack *stk=(Stack *) NULL;
long num = 100;

SOM_InitEnvironment(__SOMEnv);
SOMD_Init(__SOMEnv);
stk = (Stack *) somdCreate(__SOMEnv, "Stack", TRUE);

/* Verify successful remote stack object creation and use */
if (OperationOK(__SOMEnv)) {

while (!stk->full()) {
stk->push(num);
somPrintf("Top: %d\n", stk->top());
num += 100; }

 /* Test stack overflow exception */
stk->push(num);
OperationOK(__SOMEnv);

 while (!stk->empty()) {
somPrintf("Pop: %d\n", stk->pop()); }

 /* Test stack underflow exception */
somPrintf("Top Underflow: %d\n", stk->top());
OperationOK(__SOMEnv);
somPrintf("Pop Underflow: %d\n", stk->pop());
OperationOK(__SOMEnv);

stk->push(-10000);
somPrintf("Top: %d\n", stk->top());
somPrintf("Pop: %d\n", stk->pop());

 stk->somFree();

 if (OperationOK(__SOMEnv)) {
somPrintf("Stack test successfully completed.\n"); }

}

SOMD_Uninit(__SOMEnv);
SOM_UninitEnvironment(__SOMEnv);

 return(0);
}

7

Here is the output from compiling and executing the above program with the MetaWare

HighC/C++ compiler.

[D:\otp\test\dts\2]hc ex1.cpp q:\projects\s259549a.deb\lib.os2\som.lib
MetaWare High C/C++ Compiler R2.8a
(c) Copyright 1987-95, MetaWare Incorporated
w "d:/otp/include.os2/somcls.hh",
L104/C24(#692): SOMClass & SOMClass::somAssign(SOMClass &)
| at "d:/otp/include.os2/somcls.hh",L104/C24
| overrides SOMObject & SOMObject::somAssign(SOMObject &)
| at "d:/otp/include.os2/somobj.hh",L77/C25
| because they have the same SOM external name ‘somDefaultAssign';
| however, they have different argument lists, and this may be a problem.
w "d:/otp/include.os2/somcm.hh",
L59/C27(#692): SOMClassMgr & SOMClassMgr::somAssign(SOMClassMgr &)
| at "d:/otp/include.os2/somcm.hh",L59/C27
| overrides SOMObject & SOMObject::somAssign(SOMObject &)
| at "d:/otp/include.os2/somobj.hh",L77/C25
| because they have the same SOM external name ‘somDefaultAssign';
| however, they have different argument lists, and this may be a problem.
w (#657): (info) How referenced files were included:
| File d:/otp/include.os2/somobj.hh from q:/projects/s259549a.deb/include.os2/som.hh from ex1.cpp.
| File d:/otp/include.os2/somcls.hh from q:/projects/s259549a.deb/include.os2/som.hh from ex1.cpp.
| File d:/otp/include.os2/somcm.hh from q:/projects/s259549a.deb/include.os2/som.hh from ex1.cpp.
No errors 2 warnings

Operating System/2 Linear Executable Linker
Version 2.02.001 Jun 09 1994
Copyright (C) IBM Corporation 1988-1993.
Copyright (C) Microsoft Corp. 1988-1993.
 All rights reserved.

Object Modules [.obj]: /noi /e /a:16 /bas:0x10000 /pm:vio +
Object Modules [.obj]: D:\METAWARE\ABI3\lib\startup.obj +
Object Modules [.obj]: ex1.obj +
Object Modules [.obj]: q:\projects\s259549a.deb\lib.os2\som.lib +
Object Modules [.obj]: ,

[D:\otp\test\dts\2]ex1.exe
{An instance of class SOMClassMgr at address 010A1D90}

Before compiling the above example, make sure that MetaWare's hc.cnf configuration file

(in their bin directory) includes the line

 ARGS=-Hipname=INCLUDE

so the directories in the INCLUDE environment variable are searched before MetaWare's

include directories. Then by setting INCLUDE (e.g., by using the setdts command provided

by the dtsmin.zip package), you can guarantee that the compiler finds the most recent

versions of som.hh and the emitted DTS C++ headers for the SOMobjects Developer

Toolkit classes. The som.lib link library is explicitly included on the command line because

HC/C++ doesn't provide a default.

The warnings generated during compilation should go away in future versions of High C/

C++. They are a result of differences in the way that MetaWare and VAC++ handle

assignment operators for SOM objects. A later example focuses on this specific issue.

6

Because DTS C++ support is still evolving, it is important for DTS C++ programmers to be

using the most recent versions of the hh and hc emitters. For this reason, they will be made

available (in a self-contained package) by their developers to programmers that request

them. It is likely that these will provide the best support for DTS C++ programming in the

near future. The package will be named dtsmin.zip and will be updated periodically. This

plus the latest Visual Age C++ product should provide the best support for DTS C++ in the

near future. There’s a script named setdts in the package that will place the directory into

which you install the package onto the front of all the important paths.

Also, to help you verify what versions of the emitters are being used, version numbers are

emitted at the top of generated files. For example here’s the top of an .hh file.

// This header file was generated by the IBM “DirectToSOM” emitter for C++ (V1.125)
// Generated 02/16/96 08:36:34 EST
// The efw file is version 1.65

Using IBM VAC++:

Here is the output from compiling and executing the above main program with the IBM

VisualAge C++ compiler, version 3, with the CSD named CTC303 applied.

[D:\otp\test\dts\2]icc -yxqnosomvolattr ex1.cpp /B/NOE

IBM VisualAge C ++ for OS/2, Version 3 (C) Copyright IBM Corp. 1991, 1995. - Licensed Materials -
Program Property of IBM - All Rights Reserved. IBM(R) Linker for OS/2(R), Version 01.00.05
(C) Copyright IBM Corporation 1988, 1995.
(C) Copyright Microsoft Corp. 1988, 1989.
 - Licensed Material - Program-Property of IBM - All Rights Reserved.

Object Modules [.obj]: /NOE /pmtype:vio /base:0x10000 +
Object Modules [.obj]: "ex1.obj"
Run File [ex1.*]: "ex1.exe"
Map File [ex1.map]: ""
Libraries [.lib]:
Definitions File [nul.def]:

[D:\otp\test\dts\2]ex1.exe
{An instance of class SOMClassMgr at address 000C1D90}

Before compiling the above example, you should make sure that the INCLUDE environment

variable used by icc reaches the most recent SOM include directories. By default, VAC++

links DTS C++ programs containing SOM classes with the somtk.lib library. In the past,

some versions of somtk.lib contained multiple definitions for some symbols. The VAC++

linker, ilink, complains about this, which is the reason for using /B/NOE to pass the /NOE

switch through to ilink. You shouldn’t need this switch when linking with an up-to-date

somk.lib.

Note: The reason for the -yxqnosomvolattr switch concerns the signatures for the _get and

_set methods associated with IDL attributes. This fixes a bug in the initial versions of

VAC++ and should be used until the next version of VAC++ provides this fix by default. It

is essential to use this flag if you are using noset, noget, or nodata attribute modifiers in

your IDL (explained below).

Using MetaWare High C/C++:

5

This simple program provides a basic test for the output of the hh emitter and the DTS C++

compiler. It causes the DTS C++ compiler to process the emitted .hh files somobj.hh,

somcls.hh and somcm.hh. The content of .hh files is illustrated later.

To compile the above program, your DTS C++ compiler needs to find som.hh, which is

installed in the SOMobjects Developer Toolkit include directory. Also, the DTS C++

headers generated from somobj.idl, somcls.idl, and somcm.idl are needed. The SOMobjects

Developer Toolkit includes a command script named somhh.cmd that goes into the Toolkit

include directory and generates .hh headers for all of the IDL files found there. Among

other things, this script executes the command:

sc -shh -mnoqualifytypes -musexhpass -S1000000 *.idl

This command invokes the SOM compiler, which first parses input IDL to create various

data structures, and then passes these to the hh emitter (found in emithh.dll) which produces

the corresponding .hh header file.

The reason for the -mnoqualifytypes switch is that the hh emitter uses nested C++ classes to

implement name scoping corresponding to modules in IDL. Normally, the SOM compiler

prepends module names to interface names (to create what are called C-scoped names), but

the switch prevents this, as required to support the desired mapping approach. Recent

versions of the SOM compiler provide special support for the hh emitter, and don’t require

explicit indication of this switch. The -musexhpass means that the emitter should emit

C_xh passthru statements if there are no C_hh passthru statements specified in the IDL.

The -S switch increases the string table size, and is sometimes useful.

The hh emitter is a framework emitter that uses the output template file cpp.efw. The

SMINCLUDE environment variable determines which cpp.efw file is used. Because DTS

C++ compilers sometimes provide these files, you should always check your LIBPATH and

SMINCLUDE environment variables to make sure you are using the latest versions of

emithh.dll and cpp.efw. The hc emitter is really a number of different emitters that operate

together. The main emitter is named emitdtm.dll, and is supported by the dtm.efw template

file. You can edit dtm.efw to make minor changes in the format of emitted .cpp files. The

other emitter used when -shc is indicated on the command line is the emithc.dll emitter.

This is the emitter that performs incremental update. You can see what emitters are running

by using a -v switch on the sc command line.

In this paper, we generally assume that the latest tool versions are found in the SOMobjects

Developer Toolkit, but, in reality, things are more complicated since SOM has many

current sources. On OS/2, SOM comes with Warp, with the OS/2 Developers Toolkit, with

the Visual Age C++ compiler, and with the SOMobjects Toolkit. And the levels of SOM in

these different channels can be different. For example, the version of SOM originally

included in Warp was a special build done in Boca, not by the SOM developers in Austin.

Typically, SOM developers can only support official versions of SOM provided in the

SOMobjects Toolkit. Also, due to an internal IBM reorganization, it now appears that there

may no longer be a separate SOMobjects Toolkit product (whose install config process at

least tried to avoid replacing later kernel versions with earlier ones). Exactly who provides

what and how is likely to be confusing for a while.

4

Alternatively, you could write an IDL interface definition for your new subclass and use the

hh emitter to produce your DTS C++ header. This alternative approach enables you to

define and use new IDL data types in your code. (You cannot currently define IDL data

types in DTS C++.)

Note: This same .hh file (generated from your IDL) serves to support both your implementation code, and

code written by users of your class. Special implementation bindings (as used to support C and

native mode C++ implementations for SOM classes) are not required by a DTS compiler.

To then create an implementation, you would use the hc emitter to create an

implementation file, and then fill in the resulting member function stubs.

If your objective is to create a new SOM class library for others to use, you need to provide

IDL to represent the functionality of the new SOM classes you have implemented.

If you write your own .hh header file, the DTS C++ compiler can process this header and

output the corresponding IDL. Consult your DTS C++ compiler's documentation to learn

more about this procedure. We don’t currently recommend this approach, however. If your

users need to see IDL, we recommend that you create this IDL yourself.

If you write the IDL interface for your class according to some simple guidelines

(described below) and use the hh and hc emitter to create an implementation, your original

IDL can be published. This is an important practical consideration given limitations in the

IDL currently generated by DTS C++ compilers.

It is natural to consider the possibility that some users of your class library may also have

DTS C++ compilers. If so, they can use the hh emitter to create their own DTS C++ headers

from the IDL you provide them.

As another alternative, you might provide users with hand written DTS C++ headers

instead of IDL. The main reason for doing this would be that your class library is intended

for use only by other DTS C++ users. Normally, this will be the case if your headers use

non-IDL data types (for example, C++ arrays, C++ unions, C++ pointers to members, etc.).

Note: It is very easy for this to happen when you write your own C++ headers; when you

start with IDL, this can’t happen..

Using SOM Classes

The following simple program illustrates use of SOM classes from DTS C++. In this

example, the somEnvironmentNew function creates an initial SOM environment for the

executing process and returns a pointer to the SOM class manager (the class manager is an

instance of the SOM class, SOMClassMgr, which is a subclass of SOMObject). The

somPrintSelf method (available on all SOM objects) is then invoked on the class manager.

// filename: ex1.cpp
#include <som.hh>
main()
{
 SOMClassMgr *cm = somEnvironmentNew();
 cm->somPrintSelf();
}

3

So, native mode class libraries are used in DTS C++ just as they are used in any C++

development environment.

If you subclass from some of the provided classes, you will write a new C++ header for

your new subclasses and include the C++ headers for their parents into your new header

prior to the declaration of the new subclasses. In general, you'll include your new header

into another file that defines the implementations for the member functions that are

overridden and introduced by your new subclasses.

If you are going to publish your class library, you package it up (in source or binary form)

and additionally provide the C++ headers that describe your classes.

SOM Class Libraries

In contrast, SOM class libraries are published in binary form and are accompanied by IDL

that declares the interfaces and other types important for using the class library.

If some of the non-interface (i.e., non-class) types needed for use of a class library are not

completely defined in the IDL, language-specific headers must also supplied. The main

reason for discouraging this approach is that instead of providing a single language neutral

source for type information, the publisher of the SOM class library must anticipate all the

possible languages from which the class library might be used and provide special support

for each of these languages. For example, the DSOM class framework doesn't provide self-

contained IDL. It originally provided top-level C and native mode C++ headers (somd.h

and somd.xh). Later, to support DTS C++, a new, top-level somd.hh include file was

provided. It’s best if the IDL describing a SOM class library is self-contained.

But, the DTS C++ compiler doesn't understand IDL (it only understands C++ and a handful

of DTS pragmas). So, how do you use a SOM class library from DTS C++ when the

classes are described by IDL? The answer is provided by the hh emitter. Given IDL as

input, the hh emitter produces a DTS C++ header file (with an .hh extension) that

represents all the important information in the original IDL file by using C++ and several

special DTS pragmas.

Note: The SOMobjects Developer Toolkit provides two different kinds of C++ bindings: DTS C++

bindings (produced by the hc and hh emitters), and native mode C++ bindings (produced by the xc,

xh, and xih emitters). Native mode bindings can be used with any standard C++ compiler, but they

don't provide transparent C++ use and definition of SOM classes as enabled by DTS C++. The DTS

and native mode bindings are quite different, for reasons that will be explained below.

The SOMobjects Toolkit provides top-level .hh include files for SOM and DSOM (these

file are named som.hh and somd.hh). They define primitive SOM types and DSOM types

that are not defined in IDL, and include DTS C++ headers for the SOM and DSOM classes

(generated from IDL using the hh emitter).

Once you've created the DTS C++ headers for the SOM classes you are using (and all their

ancestors), you could include the necessary headers into a C++ header that you write for

your new subclasses. You would then create an implementation file that includes this new

header and defines the necessary DTS C++ member functions.

2

To discuss the possibilities, the following terminology is useful. C++ compilers normally

use their own, proprietary internal representation for objects, method tables, etc. We call

the resulting objects native mode because they can be used only by code native to the same

compiler whose code creates the objects. In contrast, DTS mode objects are SOM objects

programmed using a DTS compiler. These objects can be accessed using the public SOM

API from any programming language or compiler that can call externally defined functions.

A DTS C++ compiler lets you control which mode is used to implement different C++

structs and classes in your program.

There are two important limitations imposed on DTS mode classes. The first is that a DTS

mode class can inherit only one copy of any given ancestor class. This reflects how SOM

inheritance works. To strictly satisfy C++ semantics, there should be only one path to each

ancestor of a DTS mode C++ class, or, if there are multiple paths to an ancestor (due to

multiple inheritance diamond tops), the ancestor should be a virtual base class in all of

these paths.

DTS C++ compilers should issue (only) a warning when C++ inheritance semantics is

violated by a SOM class hierarchy, and should support a pragma to allow the warning to be

turned off in specific cases.

The second limitation is that any given C++ class must either be fully native mode (i.e.,

none of its ancestors are SOM classes), or fully DTS mode (i.e., all of its ancestors are

SOM classes). DTS C++ compilers issue an error if this restriction is violated.

Because of the second limitation, you don’t have to explicitly declare whether a subclass is

to be compiled using DTS mode. This is determined by the parents of the subclass. Explicit

guidance is required only for root classes (that is, classes without parents). The default in

this case is native mode, and various command line switches and pragmas are provided for

changing this.

Consult your DTS C++ compiler's documentation to learn more about the above details.

Native Mode Class Libraries

Native mode C++ class libraries are either published in source form, or are published in

binary form for use with a specific compiler. Accompanying this are C++ headers that

declare the classes (and other types) important for using the class library.

Although DTS C++ compilers provide mechanisms (for example, compile line switches)

that allow using DTS mode while compiling source code that contains no DTS pragmas,

these mechanisms are intended for code written with knowledge of their use. In most cases,

not all of the source for a native C++ class library should be converted to DTS mode. For

example, C++ structs without virtual functions may be intended by their designer to be

interoperable with C language routines that use C structs. If these C++ structs were

compiled in DTS mode, the resulting objects would be SOM objects with an initial method

table pointer. As a result, they would not have the structures originally intended by their

designer. For reasons such as this, it is best to assume that you will always compile native

mode class libraries in native mode. This is the default behavior provided by DTS C++

compilers.

1

DirectToSom C++ and SOMobjects

Scott Danforth

shd@austin.ibm.com

4/11/96

Introduction

DirectToSOM C++ is based on the following simple principle: when you define a C++

class that descends from SOMObject, the compiler implements it using SOM. This let’s

you use all of C++ to define and use SOM classes, which is great news for programmers of

the Workplace Shell and other SOM-based frameworks. For example, you can now have

SOM objects as local variables on your C++ stack, with full constructor/destructor support.

Two object-oriented programming languages are currently supported by DTS compilers;

C++ and IBM OO-Cobol. And, others might be in the future. But, the remainder of this

paper focuses on DTS C++ because SOMobjects tools now provide specific support for

DTS C++.

These DTS C++ tools are based on SOM IDL, and are referred to as the hh and the hc

emitters. They support generation of a DTS C++ header file that represents IDL interface

and type definitions, and generation of a corresponding DTS C++ implementation template

file -- a file containing stubs for the DTS C++ member functions needed to implement

SOM classes that support IDL interfaces. To assist code evolution, the hc emitter performs

incremental update on previously existing implementation template files when you change

your IDL.

Users of any particular tool (including a DTS C++ compiler) should expect to find answers

to most of their "how do I do this?" questions in the documentation or support forums

associated with that specific tool. Therefore, this paper does not provide an in-depth

presentation of programming in DTS C++. Most DTS C++ programming questions should

be answered by your DTS C++ compiler's documentation. (-:

This paper primarily highlights the hh and hc emitters. It shows how they support use and

implementation of SOM classes whose objects’ interfaces are defined using IDL.

The Big Picture

There are many possible scenarios for using a DTS C++ compiler. In most cases, you will

use it to compile source code that you write. It may also (some day) be possible to use the

Visual Age C++ VisualBuilder or other tools to produce DTS C++ source code, but this is a

topic beyond the scope of this paper. The interesting top-level decisions concern what

previously developed class libraries to use and whether or not you are going to create a

class library for others to use.

There are basically two kinds of class libraries that you can use and create with DTS C++:

native mode C++ class libraries, and SOM class libraries (in general, a mixture of the two

is also possible).

